Report

Orbital angular momentum microlaser

+ See all authors and affiliations

Science  29 Jul 2016:
Vol. 353, Issue 6298, pp. 464-467
DOI: 10.1126/science.aaf8533

You are currently viewing the abstract.

View Full Text

Microlasers with a twist

Structured light, in the form of helical wavefronts, provides an additional degree of freedom to encode information for optical communications. Creating light beams with the desired amount of optical angular momentum, or twist, has usually been achieved with bulk optic devices. Miao et al. demonstrate a possible route for an integrated optics approach in which a twisted-light source with a controlled amount of optical angular momentum is generated internally to the designed device structure. These microlasers could find application in telecommunication and information technologies to increase the rate of information transmission.

Science, this issue p. 464

Abstract

Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.

View Full Text