Rapid evolution accelerates plant population spread in fragmented experimental landscapes

See allHide authors and affiliations

Science  29 Jul 2016:
Vol. 353, Issue 6298, pp. 482-485
DOI: 10.1126/science.aaf6268

You are currently viewing the abstract.

View Full Text

Patchy landscapes select for invasiveness

Invasive species are ubiquitous in human-dominated landscapes, yet we have only limited understanding of their ecological and evolutionary dynamics. Williams et al. used an experimental system with the model plant species Arabidopsis thaliana to examine how evolution affects the spread of plant populations through landscapes of varying patchiness. Plant height and dispersal ability evolved more rapidly in patchier experimental landscapes, suggesting that fragmentation can select for more rapid invasion velocity. Hence, evolution may need to be taken into account in predictions of future invasion rates.

Science, this issue p. 482


Predicting the speed of biological invasions and native species migrations requires an understanding of the ecological and evolutionary dynamics of spreading populations. Theory predicts that evolution can accelerate species’ spread velocity, but how landscape patchiness—an important control over traits under selection—influences this process is unknown. We manipulated the response to selection in populations of a model plant species spreading through replicated experimental landscapes of varying patchiness. After six generations of change, evolving populations spread 11% farther than nonevolving populations in continuously favorable landscapes and 200% farther in the most fragmented landscapes. The greater effect of evolution on spread in patchier landscapes was consistent with the evolution of dispersal and competitive ability. Accounting for evolutionary change may be critical when predicting the velocity of range expansions.

View Full Text