Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor

+ See all authors and affiliations

Science  05 Aug 2016:
Vol. 353, Issue 6299, pp. 563-566
DOI: 10.1126/science.aag0274

You are currently viewing the abstract.

View Full Text

Membranes to make benzene from methane

Methane gas is expensive to ship. It is usually converted into carbon monoxide and hydrogen and then liquefied. This is economically feasible only on very large scales. Hence, methane produced in small amounts at remote locations is either burned or not extracted. A promising alternative is conversion to benzene and hydrogen with molybdenumzeolite catalysts. Unfortunately, these catalysts deactivate because of carbon buildup; plus, hydrogen has to be removed to drive the reaction forward. Morejudo et al. address both of these problems with a solid-state BaZrO3 membrane reactor that electrochemically removes hydrogen and supplies oxygen to suppress carbon buildup.

Science, this issue p. 563


Nonoxidative methane dehydroaromatization (MDA: 6CH4 ↔ C6H6 + 9H2) using shape-selective Mo/zeolite catalysts is a key technology for exploitation of stranded natural gas reserves by direct conversion into transportable liquids. However, this reaction faces two major issues: The one-pass conversion is limited by thermodynamics, and the catalyst deactivates quickly through kinetically favored formation of coke. We show that integration of an electrochemical BaZrO3-based membrane exhibiting both proton and oxide ion conductivity into an MDA reactor gives rise to high aromatic yields and improved catalyst stability. These effects originate from the simultaneous extraction of hydrogen and distributed injection of oxide ions along the reactor length. Further, we demonstrate that the electrochemical co-ionic membrane reactor enables high carbon efficiencies (up to 80%) that improve the technoeconomic process viability.

View Full Text