Cardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseases

See allHide authors and affiliations

Science  19 Aug 2016:
Vol. 353, Issue 6301, pp. 827-830
DOI: 10.1126/science.aad6970

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Genetic variation and coronary artery disease

Most genetic variants lie outside protein-coding genes, but their effects, especially in human health, are not well understood. Franzén et al. examined gene expression in tissues affected by coronary artery disease (CAD). They found that individuals with loci that have been associated with CAD in genome-wide analyses had different patterns of tissue-specific gene expression than individuals without these genetic variants. Similarly, tissues not associated with CAD did not have CAD-like expression patterns. Thus, tissue-specific data can be used to dissect the genetic effects that predispose individuals to CAD.

Science, this issue p. 827


Genome-wide association studies (GWAS) have identified hundreds of cardiometabolic disease (CMD) risk loci. However, they contribute little to genetic variance, and most downstream gene-regulatory mechanisms are unknown. We genotyped and RNA-sequenced vascular and metabolic tissues from 600 coronary artery disease patients in the Stockholm-Tartu Atherosclerosis Reverse Networks Engineering Task study (STARNET). Gene expression traits associated with CMD risk single-nucleotide polymorphism (SNPs) identified by GWAS were more extensively found in STARNET than in tissue- and disease-unspecific gene-tissue expression studies, indicating sharing of downstream cis-/trans-gene regulation across tissues and CMDs. In contrast, the regulatory effects of other GWAS risk SNPs were tissue-specific; abdominal fat emerged as an important gene-regulatory site for blood lipids, such as for the low-density lipoprotein cholesterol and coronary artery disease risk gene PCSK9. STARNET provides insights into gene-regulatory mechanisms for CMD risk loci, facilitating their translation into opportunities for diagnosis, therapy, and prevention.

    View Full Text