Attosecond dynamical Franz-Keldysh effect in polycrystalline diamond

+ See all authors and affiliations

Science  26 Aug 2016:
Vol. 353, Issue 6302, pp. 916-919
DOI: 10.1126/science.aag1268

You are currently viewing the abstract.

View Full Text

Shining a fast light on diamonds

Conceptually, the electronic structure of matter is a fixed scaffold of energy levels, which electrons climb with the help of light absorption. In reality, the light's electromagnetic field distorts the scaffold, a phenomenon that becomes increasingly evident with rising field intensity. Lucchini et al. studied a manifestation of this phenomenon, termed the dynamical Franz Keldysh effect, in diamond substrates exposed to sudden, moderately intense infrared fields. Using attosecond probe pulses and accompanying theoretical simulations, they resolved and accounted for the extremely rapid ensuing electron dynamics.

Science, this issue p. 916


Short, intense laser pulses can be used to access the transition regime between classical and quantum optical responses in dielectrics. In this regime, the relative roles of inter- and intraband light-driven electronic transitions remain uncertain. We applied attosecond transient absorption spectroscopy to investigate the interaction between polycrystalline diamond and a few-femtosecond infrared pulse with intensity below the critical intensity of optical breakdown. Ab initio time-dependent density functional theory calculations, in tandem with a two-band parabolic model, accounted for the experimental results in the framework of the dynamical Franz-Keldysh effect and identified infrared induction of intraband currents as the main physical mechanism responsible for the observations.

View Full Text