Research Article

Characterization of berkelium(III) dipicolinate and borate compounds in solution and the solid state

See allHide authors and affiliations

Science  26 Aug 2016:
Vol. 353, Issue 6302, aaf3762
DOI: 10.1126/science.aaf3762

You are currently viewing the abstract.

View Full Text

Bonding to berkelium

A geographical theme prevailed in the recent naming of the heaviest chemical elements. The choices brought to mind berkelium (Bk) and californium (Cf), the names chosen for elements 97 and 98 over half a century ago. Silver et al. now revisit the chemistry of Bk, which has proven fiercely challenging to study over the years on account of its vigorous radioactive decay. Synthetic crystallized Bk borate and dipicolinate compounds structurally resembled Cf analogs in the solid state but manifested distinct electronic and magnetic characteristics stemming from spin-orbit coupling effects.

Science, this issue p. 888

Structured Abstract


Developing the chemistry of late actinides is hindered by the lack of availability of isotopes, the need for specialized research facilities, and the nuclear instability of the elements. Berkelium represents one of the last elements that can be prepared on a milligram scale in nuclear reactors. However, its only available isotope, 249Bk, has a half-life of only 320 days, which has greatly curtailed the expansion of its chemistry and fundamental exploration of how large relativistic and spin-orbit coupling effects alter its electronic structure. Furthermore, data gathered from Bk(III) in aqueous media suggest that its coordination may be different from that of earlier actinides. However, a single-crystal structure of a berkelium compound has remained elusive, leaving unanswered whether these structural changes occur in the solid state.


This work focuses on characterizing two distinct berkelium compounds on the milligram scale. In particular, the goal was to obtain crystals of these compounds that could be used in structure determinations and physical property measurements. Two compounds were selected: a coordination complex of dipicolinate and a borate. Dipicolinate complexation occurs with most other lanthanides and actinides in the +3 oxidation state, facilitating comparisons across the series to discern periodic trends. In the borate family, the structural frameworks are hypersensitive to the nature of the bonding at the metal center and are rearranged accordingly. Modeling the experimental data using a variety of computational techniques allows us to deconvolute the role of covalent bonding and spin-orbit coupling in determining the electronic properties of berkelium.


Experiments with milligram quantities of 249Bk were choreographed for 6 months before the arrival of the isotope because the total quantity used in the studies was 13 mg, which corresponds to a specific activity of 21 Ci. Although this isotope is a low-energy β emitter, it decays to 249Cf at a rate of about 1.2% per week, and the latter produces hard γ radiation that represents a serious external hazard. In addition, the samples described in this work undergo about 1012 decays per second. This rapid decomposition necessitated the development of techniques for swiftly preparing and encapsulating samples and for collecting all structural and spectroscopic data within 24 hours of crystal formation. After this preparation, the single-crystal structures of Bk(III)tris(dipicolinate) and Bk(III) borate were determined. The latter compound has the same topology as that of californium(III) (Cf) and contains an eight-coordinate BkO8 unit. This reduction in coordination number is consistent with previous solution-phase x-ray absorption measurements and indicates that a drop in coordination number in the actinide series from nine to eight begins at berkelium. The magnetic and optical properties of these samples were also measured. The red luminescence from Bk(III) was similar in nature to that of curium(III) and is primarily based on an f-f transition. The ingrowth of the broad green luminescence from Cf(III), which is caused by a ligand-to-metal charge transfer, was shown to be distinct in nature from that originating from Bk(III). Ligand-field, density functional theory, and wave-function calculations were used to understand the spectroscopic features and revealed that the single largest contributor to the unexpected electronic properties of Bk(III) is spin-orbit coupling. This effect mixes the first excited state with the ground state and causes a large deviation from a pure Russell-Saunders state. The reduction in the measured magnetic moment for these samples from that calculated for an f8 electron configuration is primarily attributable to this multiconfigurational ground state.


The crystallographic data indicate that Bk(III) shares more structural similarities with Cf(III) than with Cm(III). However, ligand-field effects are more similar between Bk(III) and Cm(III). Terbium (Tb), in the lanthanide series, represents the closest analog of Bk because the trivalent cations possess 4f8 and 5f8 configurations, respectively. Spin-orbit coupling in Bk(III) creates mixing of the first excited state (5G6) with the ground state. In contrast, the ground state of the Tb(III)tris(dipicolinate) contains negligible contributions of this type. An overall conclusion from this study is that spin-orbit coupling plays a large role in determining the ground state of late actinide compounds.

Crystal structure of a berkelium coordination compound.

The central Bk(III) ion is coordinated by three monoprotonated dipicolinate ligands in tridentate O,N,O fashion. Bk, yellow; C, gray; N, blue; O, red; H, white.


Berkelium is positioned at a crucial location in the actinide series between the inherently stable half-filled 5f7 configuration of curium and the abrupt transition in chemical behavior created by the onset of a metastable divalent state that starts at californium. However, the mere 320-day half-life of berkelium’s only available isotope, 249Bk, has hindered in-depth studies of the element’s coordination chemistry. Herein, we report the synthesis and detailed solid-state and solution-phase characterization of a berkelium coordination complex, Bk(III)tris(dipicolinate), as well as a chemically distinct Bk(III) borate material for comparison. We demonstrate that berkelium’s complexation is analogous to that of californium. However, from a range of spectroscopic techniques and quantum mechanical calculations, it is clear that spin-orbit coupling contributes significantly to berkelium’s multiconfigurational ground state.

View Full Text