You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Morphogenetic signals control the patterning of multicellular organisms. Cytokinins are mobile signals that are perceived by subsets of plant cells. We found that the responses to cytokinin signaling during Arabidopsis development are constrained by the transporter PURINE PERMEASE 14 (PUP14). In our experiments, the expression of PUP14 was inversely correlated to the cytokinin signaling readout. Loss of PUP14 function allowed ectopic cytokinin signaling accompanied by aberrant morphogenesis in embryos, roots, and the shoot apical meristem. PUP14 protein localized to the plasma membrane and imported bioactive cytokinins, thus depleting apoplastic cytokinin pools and inhibiting perception by plasma membrane–localized cytokinin sensors to create a sink for active ligands. We propose that the spatiotemporal cytokinin sink patterns established by PUP14 determine the cytokinin signaling landscape that shapes the morphogenesis of land plants.