Report

Highly siderophile elements were stripped from Earth’s mantle by iron sulfide segregation

+ See all authors and affiliations

Science  09 Sep 2016:
Vol. 353, Issue 6304, pp. 1141-1144
DOI: 10.1126/science.aaf6919

You are currently viewing the abstract.

View Full Text

Abstract

Highly siderophile elements (HSEs) are strongly depleted in the bulk silicate Earth (BSE) but are present in near-chondritic relative abundances. The conventional explanation is that the HSEs were stripped from the mantle by the segregation of metal during core formation but were added back in near-chondritic proportions by late accretion, after core formation had ceased. Here we show that metal-silicate equilibration and segregation during Earth’s core formation actually increased HSE mantle concentrations because HSE partition coefficients are relatively low at the high pressures of core formation within Earth. The pervasive exsolution and segregation of iron sulfide liquid from silicate liquid (the “Hadean matte”) stripped magma oceans of HSEs during cooling and crystallization, before late accretion, and resulted in slightly suprachondritic palladium/iridium and ruthenium/iridium ratios.

View Full Text