Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains

+ See all authors and affiliations

Science  16 Sep 2016:
Vol. 353, Issue 6305, pp. 1257-1260
DOI: 10.1126/science.aag1635

You are currently viewing the abstract.

View Full Text


The repulsive Hubbard Hamiltonian is one of the foundational models describing strongly correlated electrons and is believed to capture essential aspects of high-temperature superconductivity. Ultracold fermions in optical lattices allow for the simulation of the Hubbard Hamiltonian with control over kinetic energy, interactions, and doping. A great challenge is to reach the required low entropy and to observe antiferromagnetic spin correlations beyond nearest neighbors, for which quantum gas microscopes are ideal. Here, we report on the direct, single-site resolved detection of antiferromagnetic correlations extending up to three sites in spin-1/2 Hubbard chains, which requires entropies per particle well below s* = ln(2). The simultaneous detection of spin and density opens the route toward the study of the interplay between magnetic ordering and doping in various dimensions.

View Full Text