ReportSOLAR CELLS

Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers

See allHide authors and affiliations

Science  14 Oct 2016:
Vol. 354, Issue 6309, pp. 203-206
DOI: 10.1126/science.aah4046

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Improving the stability of perovskite solar cells

Inorganic-organic perovskite solar cells have poor long-term stability because ultraviolet light and humidity degrade these materials. Bella et al. show that coating the cells with a water-proof fluorinated polymer that contains pigments to absorb ultraviolet light and re-emit it in the visible range can boost cell efficiency and limit photodegradation. The performance and stability of inorganic-organic perovskite solar cells are also limited by the size of the cations required for forming a correct lattice. Saliba et al. show that the rubidium cation, which is too small to form a perovskite by itself, can form a lattice with cesium and organic cations. Solar cells based on these materials have efficiencies exceeding 20% for over 500 hours if given environmental protection by a polymer coating.

Science, this issue pp. 203 and 206

Abstract

Organometal halide perovskite solar cells have demonstrated high conversion efficiency but poor long-term stability against ultraviolet irradiation and water. We show that rapid light–induced free-radical polymerization at ambient temperature produces multifunctional fluorinated photopolymer coatings that confer luminescent and easy-cleaning features on the front side of the devices, while concurrently forming a strongly hydrophobic barrier toward environmental moisture on the back contact side. The luminescent photopolymers re-emit ultraviolet light in the visible range, boosting perovskite solar cells efficiency to nearly 19% under standard illumination. Coated devices reproducibly retain their full functional performance during prolonged operation, even after a series of severe aging tests carried out for more than 6 months.

View Full Text