ReportSOLAR CELLS

Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance

+ See all authors and affiliations

Science  14 Oct 2016:
Vol. 354, Issue 6309, pp. 206-209
DOI: 10.1126/science.aah5557

You are currently viewing the abstract.

View Full Text

Improving the stability of perovskite solar cells

Inorganic-organic perovskite solar cells have poor long-term stability because ultraviolet light and humidity degrade these materials. Bella et al. show that coating the cells with a water-proof fluorinated polymer that contains pigments to absorb ultraviolet light and re-emit it in the visible range can boost cell efficiency and limit photodegradation. The performance and stability of inorganic-organic perovskite solar cells are also limited by the size of the cations required for forming a correct lattice. Saliba et al. show that the rubidium cation, which is too small to form a perovskite by itself, can form a lattice with cesium and organic cations. Solar cells based on these materials have efficiencies exceeding 20% for over 500 hours if given environmental protection by a polymer coating.

Science, this issue pp. 203 and 206

Abstract

All of the cations currently used in perovskite solar cells abide by the tolerance factor for incorporation into the lattice. We show that the small and oxidation-stable rubidium cation (Rb+) can be embedded into a “cation cascade” to create perovskite materials with excellent material properties. We achieved stabilized efficiencies of up to 21.6% (average value, 20.2%) on small areas (and a stabilized 19.0% on a cell 0.5 square centimeters in area) as well as an electroluminescence of 3.8%. The open-circuit voltage of 1.24 volts at a band gap of 1.63 electron volts leads to a loss in potential of 0.39 volts, versus 0.4 volts for commercial silicon cells. Polymer-coated cells maintained 95% of their initial performance at 85°C for 500 hours under full illumination and maximum power point tracking.

View Full Text