ReportPROTEIN EVOLUTION

Evolution of protein phosphorylation across 18 fungal species

+ See all authors and affiliations

Science  14 Oct 2016:
Vol. 354, Issue 6309, pp. 229-232
DOI: 10.1126/science.aaf2144

You are currently viewing the abstract.

View Full Text

Phosphorylation and fungal evolution

Phosphorylation after transcription modifies the activity of proteins. To understand how phosphorylation sites have evolved, Studer et al. studied a range of fungal species (see the Perspective by Matalon et al.). Only a few sites were apparently present in the common ancestor of all 18 species investigated. Evolutionary age appeared to predict the potential functional importance of specific conserved phosphosites.

Science, this issue p. 229; see also p. 176

Abstract

Living organisms have evolved protein phosphorylation, a rapid and versatile mechanism that drives signaling and regulates protein function. We report the phosphoproteomes of 18 fungal species and a phylogenetic-based approach to study phosphosite evolution. We observe rapid divergence, with only a small fraction of phosphosites conserved over hundreds of millions of years. Relative to recently acquired phosphosites, ancient sites are enriched at protein interfaces and are more likely to be functionally important, as we show for sites on H2A1 and eIF4E. We also observe a change in phosphorylation motif frequencies and kinase activities that coincides with the whole-genome duplication event. Our results provide an evolutionary history for phosphosites and suggest that rapid evolution of phosphorylation can contribute strongly to phenotypic diversity.

View Full Text

Related Content