Report

Gravity field of the Orientale basin from the Gravity Recovery and Interior Laboratory Mission

See allHide authors and affiliations

Science  28 Oct 2016:
Vol. 354, Issue 6311, pp. 438-441
DOI: 10.1126/science.aag0519

You are currently viewing the abstract.

View Full Text

On the origin of Orientale basin

Orientale basin is a major impact crater on the Moon, which is hard to see from Earth because it is right on the western edge of the lunar nearside. Relatively undisturbed by later events, Orientale serves as a prototype for understanding large impact craters throughout the solar system. Zuber et al. used the Gravity Recovery and Interior Laboratory (GRAIL) mission to map the gravitational field around the crater in great detail by flying the twin spacecraft as little as 2 km above the surface. Johnson et al. performed a sophisticated computer simulation of the impact and its subsequent evolution, designed to match the data from GRAIL. Together, these studies reveal how major impacts affect the lunar surface and will aid our understanding of other impacts on rocky planets and moons.

Science, this issue pp. 438 and 441

Abstract

The Orientale basin is the youngest and best-preserved major impact structure on the Moon. We used the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft to investigate the gravitational field of Orientale at 3- to 5-kilometer (km) horizontal resolution. A volume of at least (3.4 ± 0.2) × 106 km3 of crustal material was removed and redistributed during basin formation. There is no preserved evidence of the transient crater that would reveal the basin’s maximum volume, but its diameter may now be inferred to be between 320 and 460 km. The gravity field resolves distinctive structures of Orientale’s three rings and suggests the presence of faults associated with the outer two that penetrate to the mantle. The crustal structure of Orientale provides constraints on the formation of multiring basins.

View Full Text