Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle

+ See all authors and affiliations

Science  28 Oct 2016:
Vol. 354, Issue 6311, pp. 449-452
DOI: 10.1126/science.aah7161

You are currently viewing the abstract.

View Full Text

Upgrading CO2 with methane

The use of carbon dioxide as a reactant could help to mitigate its impact on climate, but it is difficult to activate as an oxidant. Buelens et al. combined methane in a high-temperature “super-dry” reforming process that generates reactive carbon monoxide. Both molecules were fed into a reactor containing a nickel methane-reforming catalyst, an iron oxide solid oxygen carrier, and calcium oxide as a CO2 sorbent. The adsorbed CO2 was treated with an inert gas purge that shifted the equilibrium, releasing mainly CO. This isothermal process avoids carbon buildup and can be used with biogas methane that contains substantial levels of CO2.

Science, this issue p. 449


Efficient CO2 transformation from a waste product to a carbon source for chemicals and fuels will require reaction conditions that effect its reduction. We developed a “super-dry” CH4 reforming reaction for enhanced CO production from CH4 and CO2. We used Ni/MgAl2O4 as a CH4-reforming catalyst, Fe2O3/MgAl2O4 as a solid oxygen carrier, and CaO/Al2O3 as a CO2 sorbent. The isothermal coupling of these three different processes resulted in higher CO production as compared with that of conventional dry reforming, by avoiding back reactions with water. The reduction of iron oxide was intensified through CH4 conversion to syngas over Ni and CO2 extraction and storage as CaCO3. CO2 is then used for iron reoxidation and CO production, exploiting equilibrium shifts effected with inert gas sweeping (Le Chatelier’s principle). Super-dry reforming uses up to three CO2 molecules per CH4 and offers a high CO space-time yield of 7.5 millimole CO per second per kilogram of iron at 1023 kelvin.

View Full Text