Report

A chemical biology route to site-specific authentic protein modifications

+ See all authors and affiliations

Science  04 Nov 2016:
Vol. 354, Issue 6312, pp. 623-626
DOI: 10.1126/science.aah4428

You are currently viewing the abstract.

View Full Text

Radicals push proteins beyond genes

Chemically modifying proteins after their translation can expand their structural and functional roles (see the Perspective by Hofmann and Bode). Two related methods describe how to exploit free radical chemistry to form carbon-carbon bonds between amino acid residues and a selected functional group. Wright et al. added a wide range of functional groups to proteins containing dehydroalanine precursors, with borohydride mediating the radical chemistry. Yang et al. employed a similar approach, using zinc in combination with copper ions. Together, these results will be useful for introducing functionalities and labels to a wide range of proteins.

Science, this issue pp. 597 and 623; see also p. 553

Abstract

Many essential biological processes are controlled by posttranslational protein modifications. The inability to synthetically attain the diversity enabled by these modifications limits functional studies of many proteins. We designed a three-step approach for installing authentic posttranslational modifications in recombinant proteins. We first use the established O-phosphoserine (Sep) orthogonal translation system to create a Sep-containing recombinant protein. The Sep residue is then dephosphorylated to dehydroalanine (Dha). Last, conjugate addition of alkyl iodides to Dha, promoted by zinc and copper, enables chemoselective carbon-carbon bond formation. To validate our approach, we produced histone H3, ubiquitin, and green fluorescent protein variants with site-specific modifications, including different methylations of H3K79. The methylated histones stimulate transcription through histone acetylation. This approach offers a powerful tool to engineer diverse designer proteins.

View Full Text