Ocean mixing and ice-sheet control of seawater 234U/238U during the last deglaciation

See allHide authors and affiliations

Science  04 Nov 2016:
Vol. 354, Issue 6312, pp. 626-629
DOI: 10.1126/science.aag1015

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Uranium in the deep sea

The ratio of 234U to 238U in seawater underlies modern marine uranium-thorium geochronology, but it is difficult to establish the ratio precisely. Chen et al. report two 234U/238U records derived from deep-sea corals (see the Perspective by Yokoyama and Esat). The records reveal a number of important similarities to and differences from existing records of the past 30,000 years. Higher values during the most recent 10,000 years than during earlier glaciated conditions may reflect enhanced subglacial melting during deglaciation.

Science, this issue p. 626; see also p. 550


Seawater 234U/238U provides global-scale information about continental weathering and is vital for marine uranium-series geochronology. Existing evidence supports an increase in 234U/238U since the last glacial period, but the timing and amplitude of its variability has been poorly constrained. Here we report two seawater 234U/238U records based on well-preserved deep-sea corals from the low-latitude Atlantic and Pacific Oceans. The Atlantic 234U/238U started to increase before major sea-level rise and overshot the modern value by 3 per mil during the early deglaciation. Deglacial 234U/238U in the Pacific converged with that in the Atlantic after the abrupt resumption of Atlantic meridional overturning. We suggest that ocean mixing and early deglacial release of excess 234U from enhanced subglacial melting of the Northern Hemisphere ice sheets have driven the observed 234U/238U evolution.

View Full Text