Report

Selective modulation of cortical state during spatial attention

+ See all authors and affiliations

Science  02 Dec 2016:
Vol. 354, Issue 6316, pp. 1140-1144
DOI: 10.1126/science.aag1420

You are currently viewing the abstract.

View Full Text

Attention changes local brain activity

There is a well-known correlation between arousal and neuronal activity in the brain. However, it is unclear how these general effects are reflected on a local scale. Engel et al. recorded from higher visual areas in behaving monkeys and discovered a new principle of cortical state fluctuations. A special type of electrodes revealed that the state changes affected neuronal excitability across all layers of the neocortex. When the animals attended to a stimulus, the vigorous spiking states became longer and the faint spiking states became shorter. These states correlated with fluctuations in the local field potential. A sophisticated computational model of the state changes fitted a two-state model of neuronal responsiveness.

Science, this issue p. 1140

Abstract

Neocortical activity is permeated with endogenously generated fluctuations, but how these dynamics affect goal-directed behavior remains a mystery. We found that ensemble neural activity in primate visual cortex spontaneously fluctuated between phases of vigorous (On) and faint (Off) spiking synchronously across cortical layers. These On-Off dynamics, reflecting global changes in cortical state, were also modulated at a local scale during selective attention. Moreover, the momentary phase of local ensemble activity predicted behavioral performance. Our results show that cortical state is controlled locally within a cortical map according to cognitive demands and reveal the impact of these local changes in cortical state on goal-directed behavior.

View Full Text