Transient compartmentalization of RNA replicators prevents extinction due to parasites

See allHide authors and affiliations

Science  09 Dec 2016:
Vol. 354, Issue 6317, pp. 1293-1296
DOI: 10.1126/science.aag1582

You are currently viewing the abstract.

View Full Text

Beating the curse of the parasite

The evolution of molecular replicators was a critical step in the origin of life. Such replicators would have suffered from faster-replicating “molecular parasites” outcompeting the parental replicator. Compartmentalization of replicators inside protocells would have helped ameliorate the effect of parasites. Matsumura et al. show that transient compartmentalization in nonbiological materials is sufficient to tame the problem of parasite takeover. They analyzed viral replication in a droplet-based microfluidic system, which revealed that as long as there is selection for a functional replicator, the population is not overwhelmed by the faster-replicating parasite genomes.

Science, this issue p. 1293


The appearance of molecular replicators (molecules that can be copied) was probably a critical step in the origin of life. However, parasitic replicators would take over and would have prevented life from taking off unless the replicators were compartmentalized in reproducing protocells. Paradoxically, control of protocell reproduction would seem to require evolved replicators. We show here that a simpler population structure, based on cycles of transient compartmentalization (TC) and mixing of RNA replicators, is sufficient to prevent takeover by parasitic mutants. TC tends to select for ensembles of replicators that replicate at a similar rate, including a diversity of parasites that could serve as a source of opportunistic functionality. Thus, TC in natural, abiological compartments could have allowed life to take hold.

View Full Text