Report

Inflation-predictable behavior and co-eruption deformation at Axial Seamount

See allHide authors and affiliations

Science  16 Dec 2016:
Vol. 354, Issue 6318, pp. 1399-1403
DOI: 10.1126/science.aah4666

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Volcano monitoring goes into the deep

Axial Seamount is a large and active submarine volcano along the Juan de Fuca midocean ridge off the coast of the western United States. Eruptions in 1998 and 2011 were followed by periods of magma recharge, making it an ideal location to include in the Ocean Observatories Initiative Cabled Array. Wilcock et al. present real-time seismic data from the most recent eruption in April 2015 that allow the tracking of magma before and during eruption. Nooner and Chadwick show that eruptions are predictable on the basis of deformation data. As magma pools underneath it, Axial Seamount inflates and erupts when the inflation hits a threshold. Both studies elucidate the dynamics of submarine volcanoes, which vastly outnumber their aboveground counterparts.

Science, this issue p. 1395, p. 1399

Abstract

Deformation of the ground surface at active volcanoes provides information about magma movements at depth. Improved seafloor deformation measurements between 2011 and 2015 documented a fourfold increase in magma supply and confirmed that Axial Seamount’s eruptive behavior is inflation-predictable, probably triggered by a critical level of magmatic pressure. A 2015 eruption was successfully forecast on the basis of this deformation pattern and marked the first time that deflation and tilt were captured in real time by a new seafloor cabled observatory, revealing the timing, location, and volume of eruption-related magma movements. Improved modeling of the deformation suggests a steeply dipping prolate-spheroid pressure source beneath the eastern caldera that is consistent with the location of the zone of highest melt within the subcaldera magma reservoir determined from multichannel seismic results.

View Full Text