Report

Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy

+ See all authors and affiliations

Science  06 Jan 2017:
Vol. 355, Issue 6320, pp. 55-59
DOI: 10.1126/science.aah6765

You are currently viewing the abstract.

View Full Text

Water ice beneath the surface of Ceres

The dwarf planet Ceres in the inner solar system is thought to have a crust made of a mixture of rock and ice. Prettyman et al. used neutron and gamma-ray spectroscopy from the Dawn spacecraft to peer below Ceres' surface and map the subsurface composition. They found evidence for water ice across the dwarf planet, with water making up a larger fraction of the material near the poles than around the equator. Together with their measurements of other elements, these results aid our understanding of Ceres' composition and constrain models of its formation.

Science, this issue p. 55

Abstract

The surface elemental composition of dwarf planet Ceres constrains its regolith ice content, aqueous alteration processes, and interior evolution. Using nuclear spectroscopy data acquired by NASA’s Dawn mission, we determined the concentrations of elemental hydrogen, iron, and potassium on Ceres. The data show that surface materials were processed by the action of water within the interior. The non-icy portion of Ceres’ carbon-bearing regolith contains similar amounts of hydrogen to those present in aqueously altered carbonaceous chondrites; however, the concentration of iron on Ceres is lower than in the aforementioned chondrites. This allows for the possibility that Ceres experienced modest ice-rock fractionation, resulting in differences between surface and bulk composition. At mid-to-high latitudes, the regolith contains high concentrations of hydrogen, consistent with broad expanses of water ice, confirming theoretical predictions that ice can survive for billions of years just beneath the surface.

View Full Text