Report

Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics

+ See all authors and affiliations

Science  13 Jan 2017:
Vol. 355, Issue 6321, pp. 181-184
DOI: 10.1126/science.aai8212

You are currently viewing the abstract.

View Full Text

Soil biota and plant diversity

Soil biota, including symbionts such as mycorrhizal fungi and nitrogen-fixing bacteria, as well as fungal and bacterial pathogens, affect terrestrial plant diversity and growth patterns (see the Perspective by van der Putten). Teste et al. monitored growth and survival in Australian shrubland plant species paired with soil biota from plants of the same species and from other plants that use different nutrient acquisition strategies. Plant-soil feedbacks appear to drive local plant diversity through interactions between the different types of plants and their associated soil biota. Bennett et al. studied plant-soil feedbacks in soil and seeds from 550 populations of 55 species of North American trees. Feedbacks ranged from positive to negative, depending on the type of mycorrhizal association, and were related to how densely the same species occurred in natural populations.

Science, this issue p. 134, p. 173; see also p. 181

Abstract

Feedback with soil biota is an important determinant of terrestrial plant diversity. However, the factors regulating plant-soil feedback, which varies from positive to negative among plant species, remain uncertain. In a large-scale study involving 55 species and 550 populations of North American trees, the type of mycorrhizal association explained much of the variation in plant-soil feedbacks. In soil collected beneath conspecifics, arbuscular mycorrhizal trees experienced negative feedback, whereas ectomycorrhizal trees displayed positive feedback. Additionally, arbuscular mycorrhizal trees exhibited strong conspecific inhibition at multiple spatial scales, whereas ectomycorrhizal trees exhibited conspecific facilitation locally and less severe conspecific inhibition regionally. These results suggest that mycorrhizal type, through effects on plant-soil feedbacks, could be an important contributor to population regulation and community structure in temperate forests.

View Full Text