Principles for designing proteins with cavities formed by curved β sheets

See allHide authors and affiliations

Science  13 Jan 2017:
Vol. 355, Issue 6321, pp. 201-206
DOI: 10.1126/science.aah7389

You are currently viewing the abstract.

View Full Text

Designing proteins with cavities

In de novo protein design, creating custom-tailored binding sites is a particular challenge because these sites often involve nonideal backbone structures. For example, curved b sheets are a common ligand binding motif. Marcos et al. investigated the principles that drive β-sheet curvature by studying the geometry of β sheets in natural proteins and folding simulations. In a step toward custom design of enzyme catalysts, they used these principles to control β-sheet geometry and design proteins with differently shaped cavities.

Science, this issue p. 201


Active sites and ligand-binding cavities in native proteins are often formed by curved β sheets, and the ability to control β-sheet curvature would allow design of binding proteins with cavities customized to specific ligands. Toward this end, we investigated the mechanisms controlling β-sheet curvature by studying the geometry of β sheets in naturally occurring protein structures and folding simulations. The principles emerging from this analysis were used to design, de novo, a series of proteins with curved β sheets topped with α helices. Nuclear magnetic resonance and crystal structures of the designs closely match the computational models, showing that β-sheet curvature can be controlled with atomic-level accuracy. Our approach enables the design of proteins with cavities and provides a route to custom design ligand-binding and catalytic sites.

View Full Text