Report

GTPase activity–coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis

+ See all authors and affiliations

Science  17 Feb 2017:
Vol. 355, Issue 6326, pp. 744-747
DOI: 10.1126/science.aak9995

You are currently viewing the abstract.

View Full Text

Coordinating cell wall synthesis and cell division

Most bacteria are protected by peptidoglycan cell walls, which must be remodeled to split the cell. Cell division requires the tubulin homolog FtsZ, a highly conserved cytoskeletal polymer that specifies the future site of division. Bisson-Filho et al. and Yang et al. found that the dynamic treadmilling of FtsZ filaments controls both the location and activity of the associated cell wall synthetic enzymes. This creates discrete sites of cell wall synthesis that circle around the division plane to divide the cell.

Science, this issue p. 739, p. 744

Abstract

The bacterial tubulin FtsZ is the central component of the cell division machinery, coordinating an ensemble of proteins involved in septal cell wall synthesis to ensure successful constriction. How cells achieve this coordination is unknown. We found that in Escherichia coli cells, FtsZ exhibits dynamic treadmilling predominantly determined by its guanosine triphosphatase activity. The treadmilling dynamics direct the processive movement of the septal cell wall synthesis machinery but do not limit the rate of septal synthesis. In FtsZ mutants with severely reduced treadmilling, the spatial distribution of septal synthesis and the molecular composition and ultrastructure of the septal cell wall were substantially altered. Thus, FtsZ treadmilling provides a mechanism for achieving uniform septal cell wall synthesis to enable correct polar morphology.

View Full Text