Report

Predicting human olfactory perception from chemical features of odor molecules

+ See all authors and affiliations

Science  24 Feb 2017:
Vol. 355, Issue 6327, pp. 820-826
DOI: 10.1126/science.aal2014

You are currently viewing the abstract.

View Full Text

How will this molecule smell?

We still do not understand what a given substance will smell like. Keller et al. launched an international crowd-sourced competition in which many teams tried to solve how the smell of a molecule will be perceived by humans. The teams were given access to a database of responses from subjects who had sniffed a large number of molecules and been asked to rate each smell across a range of different qualities. The teams were also given a comprehensive list of the physical and chemical features of the molecules smelled. The teams produced algorithms to predict the correspondence between the quality of each smell and a given molecule. The best models that emerged from this challenge could accurately predict how a new molecule would smell.

Science, this issue p. 820

Abstract

It is still not possible to predict whether a given molecule will have a perceived odor or what olfactory percept it will produce. We therefore organized the crowd-sourced DREAM Olfaction Prediction Challenge. Using a large olfactory psychophysical data set, teams developed machine-learning algorithms to predict sensory attributes of molecules based on their chemoinformatic features. The resulting models accurately predicted odor intensity and pleasantness and also successfully predicted 8 among 19 rated semantic descriptors (“garlic,” “fish,” “sweet,” “fruit,” “burnt,” “spices,” “flower,” and “sour”). Regularized linear models performed nearly as well as random forest–based ones, with a predictive accuracy that closely approaches a key theoretical limit. These models help to predict the perceptual qualities of virtually any molecule with high accuracy and also reverse-engineer the smell of a molecule.

    View Full Text