Report

DNA Fountain enables a robust and efficient storage architecture

See allHide authors and affiliations

Science  03 Mar 2017:
Vol. 355, Issue 6328, pp. 950-954
DOI: 10.1126/science.aaj2038

You are currently viewing the abstract.

View Full Text

A reliable and efficient DNA storage architecture

DNA has the potential to provide large-capacity information storage. However, current methods have only been able to use a fraction of the theoretical maximum. Erlich and Zielinski present a method, DNA Fountain, which approaches the theoretical maximum for information stored per nucleotide. They demonstrated efficient encoding of information—including a full computer operating system—into DNA that could be retrieved at scale after multiple rounds of polymerase chain reaction.

Science, this issue p. 950

Abstract

DNA is an attractive medium to store digital information. Here we report a storage strategy, called DNA Fountain, that is highly robust and approaches the information capacity per nucleotide. Using our approach, we stored a full computer operating system, movie, and other files with a total of 2.14 × 106 bytes in DNA oligonucleotides and perfectly retrieved the information from a sequencing coverage equivalent to a single tile of Illumina sequencing. We also tested a process that can allow 2.18 × 1015 retrievals using the original DNA sample and were able to perfectly decode the data. Finally, we explored the limit of our architecture in terms of bytes per molecule and obtained a perfect retrieval from a density of 215 petabytes per gram of DNA, orders of magnitude higher than previous reports.

View Full Text