Report

Quantized thermal transport in single-atom junctions

See allHide authors and affiliations

Science  17 Mar 2017:
Vol. 355, Issue 6330, pp. 1192-1195
DOI: 10.1126/science.aam6622

You are currently viewing the abstract.

View Full Text

Calorimetry reaches an atomic junction

Electrical and thermal conductivity in metals are linked at the macroscopic length scale because electrons carry both heat and current. Cui et al. found that this relationship, the Wiedemann-Franz law, holds down to the atomic scale in gold and platinum (see the Perspective by Segal). They made thermal and electrical conductance measurements through a point contact only one atom thick. In gold, the thermal and electrical conductance was quantized, owing to the electronic band structure of the metal. The experiments pave the way for high-resolution calorimetry and other thermal measurements at the nanoscale.

Science, this issue p. 1192; see also p. 1125

Abstract

Thermal transport in individual atomic junctions and chains is of great fundamental interest because of the distinctive quantum effects expected to arise in them. By using novel, custom-fabricated, picowatt-resolution calorimetric scanning probes, we measured the thermal conductance of gold and platinum metallic wires down to single-atom junctions. Our work reveals that the thermal conductance of gold single-atom junctions is quantized at room temperature and shows that the Wiedemann-Franz law relating thermal and electrical conductance is satisfied even in single-atom contacts. Furthermore, we quantitatively explain our experimental results within the Landauer framework for quantum thermal transport. The experimental techniques reported here will enable thermal transport studies in atomic and molecular chains, which will be key to investigating numerous fundamental issues that thus far have remained experimentally inaccessible.

View Full Text