Report

A conserved NAD+ binding pocket that regulates protein-protein interactions during aging

+ See all authors and affiliations

Science  24 Mar 2017:
Vol. 355, Issue 6331, pp. 1312-1317
DOI: 10.1126/science.aad8242

You are currently viewing the abstract.

View Full Text

NAD+ binding modulates protein interactions

An unexpected function of the oxidized form of nicotinamide adenine dinucleotide (NAD+) could underlie some effects of aging and propensity to age-related diseases. Li et al. found that the protein DBC1 (deleted in breast cancer 1) contains a domain that specifically binds NAD+. Binding of NAD+ inhibited the interaction of DBC1 with PARP1 [poly(adenosine diphosphate–ribose) polymerase 1], an enzyme important in DNA repair. Activity of PARP1 is inhibited by interaction with DBC1. Thus, the reduced abundance of NAD+ associated with aging may decrease PARP1 activity by promoting the interaction of PARP1 with DBC1. This mechanism could help explain the reported rejuvenating actions of NAD+ supplementation in older animals.

Science, this issue p. 1312

Abstract

DNA repair is essential for life, yet its efficiency declines with age for reasons that are unclear. Numerous proteins possess Nudix homology domains (NHDs) that have no known function. We show that NHDs are NAD+ (oxidized form of nicotinamide adenine dinucleotide) binding domains that regulate protein-protein interactions. The binding of NAD+ to the NHD domain of DBC1 (deleted in breast cancer 1) prevents it from inhibiting PARP1 [poly(adenosine diphosphate–ribose) polymerase], a critical DNA repair protein. As mice age and NAD+ concentrations decline, DBC1 is increasingly bound to PARP1, causing DNA damage to accumulate, a process rapidly reversed by restoring the abundance of NAD+. Thus, NAD+ directly regulates protein-protein interactions, the modulation of which may protect against cancer, radiation, and aging.

View Full Text

Related Content