Crystal structure of the overlapping dinucleosome composed of hexasome and octasome

See allHide authors and affiliations

Science  14 Apr 2017:
Vol. 356, Issue 6334, pp. 205-208
DOI: 10.1126/science.aak9867

You are currently viewing the abstract.

View Full Text

Nucleosomes in contact

In eukaryotic cells, genomic DNA must be compacted to fit inside the nucleus. A key player in DNA packaging is the nucleosome, which comprises a segment of DNA wrapped around an octamer of histone proteins. During replication and transcription, nucleosomes must reposition themselves on the DNA. In this process, nucleosomes can collide to form a dinucleosome. Kato et al. report a high-resolution crystal structure of a dinucleosome. One of the octamers has lost a histone dimer so that the dinucleosome comprises an octamer and a hexamer. The structure may represent an intermediate during chromatin remodeling.

Science, this issue p. 205


Nucleosomes are dynamic entities that are repositioned along DNA by chromatin remodeling processes. A nucleosome repositioned by the switch-sucrose nonfermentable (SWI/SNF) remodeler collides with a neighbor and forms the intermediate “overlapping dinucleosome.” Here, we report the crystal structure of the overlapping dinucleosome, in which two nucleosomes are associated, at 3.14-angstrom resolution. In the overlapping dinucleosome structure, the unusual “hexasome” nucleosome, composed of the histone hexamer lacking one H2A-H2B dimer from the conventional histone octamer, contacts the canonical “octasome” nucleosome, and they intimately associate. Consequently, about 250 base pairs of DNA are left-handedly wrapped in three turns, without a linker DNA segment between the hexasome and octasome moieties. The overlapping dinucleosome structure may provide important information to understand how nucleosome repositioning occurs during the chromatin remodeling process.

View Full Text