Report

Nucleic acid detection with CRISPR-Cas13a/C2c2

+ See all authors and affiliations

Science  28 Apr 2017:
Vol. 356, Issue 6336, pp. 438-442
DOI: 10.1126/science.aam9321

You are currently viewing the abstract.

View Full Text

Sensitive and specific CRISPR diagnostics

Methods are needed that can easily detect nucleic acids that signal the presence of pathogens, even at very low levels. Gootenberg et al. combined the allele-specific sensing ability of CRISPR-Cas13a with recombinase polymerase amplification methods to detect specific RNA and DNA sequences. The method successfully detected attomolar levels of Zika virus, as well as the presence of pathogenic bacteria. It could also be used to perform human genotyping from cell-free DNA.

Science, this issue p. 438

Abstract

Rapid, inexpensive, and sensitive nucleic acid detection may aid point-of-care pathogen detection, genotyping, and disease monitoring. The RNA-guided, RNA-targeting clustered regularly interspaced short palindromic repeats (CRISPR) effector Cas13a (previously known as C2c2) exhibits a “collateral effect” of promiscuous ribonuclease activity upon target recognition. We combine the collateral effect of Cas13a with isothermal amplification to establish a CRISPR-based diagnostic (CRISPR-Dx), providing rapid DNA or RNA detection with attomolar sensitivity and single-base mismatch specificity. We use this Cas13a-based molecular detection platform, termed Specific High-Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK), to detect specific strains of Zika and Dengue virus, distinguish pathogenic bacteria, genotype human DNA, and identify mutations in cell-free tumor DNA. Furthermore, SHERLOCK reaction reagents can be lyophilized for cold-chain independence and long-term storage and be readily reconstituted on paper for field applications.

View Full Text

Related Content