Report

Bottom-up construction of a superstructure in a porous uranium-organic crystal

+ See all authors and affiliations

Science  12 May 2017:
Vol. 356, Issue 6338, pp. 624-627
DOI: 10.1126/science.aam7851

You are currently viewing the abstract.

View Full Text

Intricacy anchored by uranium

Metal-organic frameworks generally have one level of assembly complexity: Organic linkers join inorganic nodes in a repeating lattice. Li et al. created a structure composed of cuboctahedra, assembled from uranium cations and organic linkers, that shared triangular faces to form prisms. These structures formed cages, which in turn joined to make tetrahedra that assembled with a diamond-lattice topology. This hierarchical open structure generated a huge unit cell with more than 800 nodes and linkers, containing internal cavities with diameters of 5 and 6 nm.

Science, this issue p. 624

Abstract

Bottom-up construction of highly intricate structures from simple building blocks remains one of the most difficult challenges in chemistry. We report a structurally complex, mesoporous uranium-based metal-organic framework (MOF) made from simple starting components. The structure comprises 10 uranium nodes and seven tricarboxylate ligands (both crystallographically nonequivalent), resulting in a 173.3-angstrom cubic unit cell enclosing 816 uranium nodes and 816 organic linkers—the largest unit cell found to date for any nonbiological material. The cuboctahedra organize into pentagonal and hexagonal prismatic secondary structures, which then form tetrahedral and diamond quaternary topologies with unprecedented complexity. This packing results in the formation of colossal icosidodecahedral and rectified hexakaidecahedral cavities with internal diameters of 5.0 nanometers and 6.2 nanometers, respectively—ultimately giving rise to the lowest-density MOF reported to date.

View Full Text