Research Article

Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft

+ See all authors and affiliations

Science  26 May 2017:
Vol. 356, Issue 6340, pp. 821-825
DOI: 10.1126/science.aal2108

You are currently viewing the abstract.

View Full Text

Juno swoops around giant Jupiter

Jupiter is the largest and most massive planet in our solar system. NASA's Juno spacecraft arrived at Jupiter on 4 July 2016 and made its first close pass on 27 August 2016. Bolton et al. present results from Juno's flight just above the cloud tops, including images of weather in the polar regions and measurements of the magnetic and gravitational fields. Juno also used microwaves to peer below the visible surface, spotting gas welling up from the deep interior. Connerney et al. measured Jupiter's aurorae and plasma environment, both as Juno approached the planet and during its first close orbit.

Science, this issue p. 821, p. 826

Abstract

On 27 August 2016, the Juno spacecraft acquired science observations of Jupiter, passing less than 5000 kilometers above the equatorial cloud tops. Images of Jupiter’s poles show a chaotic scene, unlike Saturn’s poles. Microwave sounding reveals weather features at pressures deeper than 100 bars, dominated by an ammonia-rich, narrow low-latitude plume resembling a deeper, wider version of Earth’s Hadley cell. Near-infrared mapping reveals the relative humidity within prominent downwelling regions. Juno’s measured gravity field differs substantially from the last available estimate and is one order of magnitude more precise. This has implications for the distribution of heavy elements in the interior, including the existence and mass of Jupiter’s core. The observed magnetic field exhibits smaller spatial variations than expected, indicative of a rich harmonic content.

View Full Text