Research Article

Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits

See allHide authors and affiliations

Science  26 May 2017:
Vol. 356, Issue 6340, pp. 826-832
DOI: 10.1126/science.aam5928

You are currently viewing the abstract.

View Full Text

Juno swoops around giant Jupiter

Jupiter is the largest and most massive planet in our solar system. NASA's Juno spacecraft arrived at Jupiter on 4 July 2016 and made its first close pass on 27 August 2016. Bolton et al. present results from Juno's flight just above the cloud tops, including images of weather in the polar regions and measurements of the magnetic and gravitational fields. Juno also used microwaves to peer below the visible surface, spotting gas welling up from the deep interior. Connerney et al. measured Jupiter's aurorae and plasma environment, both as Juno approached the planet and during its first close orbit.

Science, this issue p. 821, p. 826

Abstract

The Juno spacecraft acquired direct observations of the jovian magnetosphere and auroral emissions from a vantage point above the poles. Juno’s capture orbit spanned the jovian magnetosphere from bow shock to the planet, providing magnetic field, charged particle, and wave phenomena context for Juno’s passage over the poles and traverse of Jupiter’s hazardous inner radiation belts. Juno’s energetic particle and plasma detectors measured electrons precipitating in the polar regions, exciting intense aurorae, observed simultaneously by the ultraviolet and infrared imaging spectrographs. Juno transited beneath the most intense parts of the radiation belts, passed about 4000 kilometers above the cloud tops at closest approach, well inside the jovian rings, and recorded the electrical signatures of high-velocity impacts with small particles as it traversed the equator.

View Full Text