Research Article

Biological control of aragonite formation in stony corals

See allHide authors and affiliations

Science  02 Jun 2017:
Vol. 356, Issue 6341, pp. 933-938
DOI: 10.1126/science.aam6371

You are currently viewing the abstract.

View Full Text

Building coral skeletons

Among other things, corals are threatened by ocean acidification and warming. Being able to project the magnitude of these threats requires an understanding of how corals form their carbonate skeletons. Von Euw et al. combined ultrahigh-resolution three-dimensional imaging and two-dimensional solid-state nuclear magnetic resonance spectroscopy to study coral skeletons. They found that mineral precipitation in corals is a biologically controlled process mediated by organic molecules, rather than an abiotic one that depends only on physico-chemical conditions. This has important implications for the health of corals in our warmer, higher-CO2 future.

Science, this issue p. 933

Abstract

Little is known about how stony corals build their calcareous skeletons. There are two prevailing hypotheses: that it is a physicochemically dominated process and that it is a biologically mediated one. Using a combination of ultrahigh-resolution three-dimensional imaging and two-dimensional solid-state nuclear magnetic resonance (NMR) spectroscopy, we show that mineral deposition is biologically driven. Randomly arranged, amorphous nanoparticles are initially deposited in microenvironments enriched in organic material; they then aggregate and form ordered aragonitic structures through crystal growth by particle attachment. Our NMR results are consistent with heterogeneous nucleation of the solid mineral phase driven by coral acid-rich proteins. Such a mechanism suggests that stony corals may be able to sustain calcification even under lower pH conditions that do not favor the inorganic precipitation of aragonite.

View Full Text