Report

Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor

See allHide authors and affiliations

Science  02 Jun 2017:
Vol. 356, Issue 6341, pp. 948-953
DOI: 10.1126/science.aal4500

You are currently viewing the abstract.

View Full Text

Methane takes the quick way out

Accounting for all the sources and sinks of methane is important for determining its concentration in the atmosphere. Andreassen et al. found evidence of large craters embedded within methane-leaking subglacial sediments in the Barents Sea, Norway. They propose that the thinning of the ice sheet at the end of recent glacial cycles decreased the pressure on pockets of hydrates buried in the seafloor, resulting in explosive blow-outs. This created the giant craters and released large quantities of methane into the water above.

Science, this issue p. 948

Abstract

Widespread methane release from thawing Arctic gas hydrates is a major concern, yet the processes, sources, and fluxes involved remain unconstrained. We present geophysical data documenting a cluster of kilometer-wide craters and mounds from the Barents Sea floor associated with large-scale methane expulsion. Combined with ice sheet/gas hydrate modeling, our results indicate that during glaciation, natural gas migrated from underlying hydrocarbon reservoirs and was sequestered extensively as subglacial gas hydrates. Upon ice sheet retreat, methane from this hydrate reservoir concentrated in massive mounds before being abruptly released to form craters. We propose that these processes were likely widespread across past glaciated petroleum provinces and that they also provide an analog for the potential future destabilization of subglacial gas hydrate reservoirs beneath contemporary ice sheets.

View Full Text