Polymeric peptide pigments with sequence-encoded properties

See allHide authors and affiliations

Science  09 Jun 2017:
Vol. 356, Issue 6342, pp. 1064-1068
DOI: 10.1126/science.aal5005

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Designing molecular disorder

Melanins are a group of natural pigments that are the primary factor affecting skin color. Lampel et al. examined a family of melanin-inspired materials based on tripeptides containing tyrosine as precursors for polymeric pigments. They found that the supramolecular organization of the tripeptide assembly is the most important factor for the enzymatic oxidation, with the position of the tyrosine residue playing a dominant role. Thus, simply juggling the order of the peptides allowed tuning of the optical and electrical properties of the resulting polymers.

Science, this issue p. 1064


Melanins are a family of heterogeneous polymeric pigments that provide ultraviolet (UV) light protection, structural support, coloration, and free radical scavenging. Formed by oxidative oligomerization of catecholic small molecules, the physical properties of melanins are influenced by covalent and noncovalent disorder. We report the use of tyrosine-containing tripeptides as tunable precursors for polymeric pigments. In these structures, phenols are presented in a (supra-)molecular context dictated by the positions of the amino acids in the peptide sequence. Oxidative polymerization can be tuned in a sequence-dependent manner, resulting in peptide sequence–encoded properties such as UV absorbance, morphology, coloration, and electrochemical properties over a considerable range. Short peptides have low barriers to application and can be easily scaled, suggesting near-term applications in cosmetics and biomedicine.

View Full Text