Coherent imaging of an attosecond electron wave packet

See allHide authors and affiliations

Science  16 Jun 2017:
Vol. 356, Issue 6343, pp. 1150-1153
DOI: 10.1126/science.aam8393

You are currently viewing the abstract.

View Full Text

A detailed look at an electron's exit

When a burst of light ejects an electron from an atom, the later detection of two charged particles masks a great deal of intermittent quantum mechanical complexity. Villeneuve et al. provide a striking look at the wavelike properties of the electron just as it emerges from neon, expelled by two photons from an attosecond pulse train in a strong infrared field. The phase distribution displays the characteristic three-node structure of an f-wave, which the Stark shift from the strong field appears to select with a single magnetic quantum number of 0.

Science, this issue p. 1150


Electrons detached from atoms or molecules by photoionization carry information about the quantum state from which they originate, as well as the continuum states into which they are released. Generally, the photoelectron momentum distribution is composed of a coherent sum of angular momentum components, each with an amplitude and phase. Here we show, by using photoionization of neon, that a train of attosecond pulses synchronized with an infrared laser field can be used to disentangle these angular momentum components. Two-color, two-photon ionization via a Stark-shifted intermediate state creates an almost pure f-wave with a magnetic quantum number of zero. Interference of the f-wave with a spherically symmetric s-wave provides a holographic reference that enables phase-resolved imaging of the f-wave.

View Full Text