Research Article

Resistance to malaria through structural variation of red blood cell invasion receptors

+ See all authors and affiliations

Science  16 Jun 2017:
Vol. 356, Issue 6343, eaam6393
DOI: 10.1126/science.aam6393

You are currently viewing the abstract.

View Full Text

Pathogens select for genomic variants

Large-scale deletions and duplications of genes, referred to as structural variants (SVs), are common within the human genome and have been linked to disease. Examining a genomic region that appears to confer a selective benefit, Leffler et al. used fine mapping to identify a specific SV that reduces the risk of severe malaria by an estimated 40% (see the Perspective by Winzeler). Data from African individuals revealed that populations harbor different SVs in this region. Furthermore, by dissecting a highly complex genomic region, the authors identified the likely causal element. This element encodes hybrid genes that affect glycophorin proteins, which are used by the malarial parasite in infection and are associated with resistance to severe disease.

Science, this issue p. eaam6393; see also p. 1122

Structured Abstract


Malaria parasites cause human disease by invading and replicating inside red blood cells. In the case of Plasmodium falciparum, this can lead to severe forms of malaria that are a major cause of childhood mortality in Africa. This species of parasite enters the red blood cell through interactions with surface proteins including the glycophorins GYPA and GYPB, which determine the polymorphic MNS blood group system. In a recent genome-wide association study, we identified alleles associated with protection against severe malaria near the cluster of genes encoding these invasion receptors.


Investigation of genetic variants at this locus and their relation to severe malaria is challenging because of the high sequence similarity between the neighboring glycophorin genes and the relative lack of available sequence data capturing the genetic diversity of sub-Saharan Africa. To better assess whether variation in the glycophorin genes could explain the signal of association, we generated additional sequence data from sub-Saharan African populations and developed an analytical approach to characterize structural variation at this complex locus.


Using 765 newly sequenced human genomes from 10 African ethnic groups along with data from the 1000 Genomes Project, we generated a reference panel of haplotypes across the glycophorin region. In addition to single-nucleotide polymorphisms and short indels, we assayed large copy number variants (CNVs) using sequencing read depth and uncovered extensive structural diversity. By imputing from this reference panel into 4579 severe malaria cases and 5310 controls from three African populations, we found that a complex CNV, here called DUP4, is associated with resistance to severe malaria and fully explains the previously reported signal of association. In our sample, DUP4 is present only in east Africa, and this localization, as well as the extent of similarity between DUP4 haplotypes, suggests that it has recently increased in frequency, presumably under natural selection due to malaria.

To evaluate the potential functional consequences of this structural variant, we analyzed high-coverage sequence-read data from multiple individuals to generate a model of the DUP4 chromosome structure. The DUP4 haplotype contains five glycophorin genes, including two hybrid genes that juxtapose the extracellular domain of GYPB with the transmembrane and intracellular domains of GYPA. Noting that these predicted hybrids are characteristic of the Dantu antigen in the MNS blood group system, we sequenced a Dantu positive individual and confirmed that DUP4 is the molecular basis of the Dantu NE blood group variant.


Although a role for GYPA and GYPB in parasite invasion is well known, a direct link between glycophorin polymorphisms and clinical susceptibility to malaria has been elusive. Here we have provided a systematic catalog of CNVs, describing structural diversity that may have functional importance at this locus. Our results identify a specific variant that encodes hybrid glycophorin proteins and is associated with protection against severe malaria. This discovery calls for further work to determine how this particular molecular rearrangement affects parasite invasion and the red blood cell response and may lead us toward new parasite vulnerabilities that can be utilized in future interventions against this deadly disease.

A structural variant creating hybrid glycophorin genes is associated with protection from severe malaria.

The reference haplotype carries three glycophorin genes, two of which (GYPA and GYPB) are expressed as proteins on the red blood cell surface. The malaria-protective haplotype carries five glycophorin genes, including two hybrid genes that encode the Dantu blood group antigen and are composed of a GYPB extracellular domain and GYPA intracellular domain. These glycophorins serve as receptors for malaria-parasite ligands during red blood cell invasion.


The malaria parasite Plasmodium falciparum invades human red blood cells by a series of interactions between host and parasite surface proteins. By analyzing genome sequence data from human populations, including 1269 individuals from sub-Saharan Africa, we identify a diverse array of large copy-number variants affecting the host invasion receptor genes GYPA and GYPB. We find that a nearby association with severe malaria is explained by a complex structural rearrangement involving the loss of GYPB and gain of two GYPB-A hybrid genes, which encode a serologically distinct blood group antigen known as Dantu. This variant reduces the risk of severe malaria by 40% and has recently increased in frequency in parts of Kenya, yet it appears to be absent from west Africa. These findings link structural variation of red blood cell invasion receptors with natural resistance to severe malaria.

  • For information about the Malaria Genomic Epidemiology Network (MalariaGEN) see

This is an article distributed under the terms of the Science Journals Default License.

View Full Text