Research Article

Quantum and isotope effects in lithium metal

See allHide authors and affiliations

Science  23 Jun 2017:
Vol. 356, Issue 6344, pp. 1254-1259
DOI: 10.1126/science.aal4886

You are currently viewing the abstract.

View Full Text

Lithium gets a new ground state

For the past 70 years, the lowest-energy crystal structure of lithium was believed to be a relatively complex one called the 9R structure. Ackland et al. show that this is incorrect. The actual lowest-energy structure for lithium is the much simpler closest-packed face-centered cubic form. In addition, 6Li and 7Li isotopes have crystal phase transitions at slightly different pressures and temperatures. This difference is chalked up to large quantum mechanical effects between the isotopes. Lithium is the only metal that shows this type of quantum effect and presents a challenge for theoreticians to explain.

Science, this issue p. 1254


The crystal structure of elements at zero pressure and temperature is the most fundamental information in condensed matter physics. For decades it has been believed that lithium, the simplest metallic element, has a complicated ground-state crystal structure. Using synchrotron x-ray diffraction in diamond anvil cells and multiscale simulations with density functional theory and molecular dynamics, we show that the previously accepted martensitic ground state is metastable. The actual ground state is face-centered cubic (fcc). We find that isotopes of lithium, under similar thermal paths, exhibit a considerable difference in martensitic transition temperature. Lithium exhibits nuclear quantum mechanical effects, serving as a metallic intermediate between helium, with its quantum effect–dominated structures, and the higher-mass elements. By disentangling the quantum kinetic complexities, we prove that fcc lithium is the ground state, and we synthesize it by decompression.

View Full Text