Research Article

Estimating economic damage from climate change in the United States

+ See all authors and affiliations

Science  30 Jun 2017:
Vol. 356, Issue 6345, pp. 1362-1369
DOI: 10.1126/science.aal4369

You are currently viewing the abstract.

View Full Text

Costing out the effects of climate change

Episodes of severe weather in the United States, such as the present abundance of rainfall in California, are brandished as tangible evidence of the future costs of current climate trends. Hsiang et al. collected national data documenting the responses in six economic sectors to short-term weather fluctuations. These data were integrated with probabilistic distributions from a set of global climate models and used to estimate future costs during the remainder of this century across a range of scenarios (see the Perspective by Pizer). In terms of overall effects on gross domestic product, the authors predict negative impacts in the southern United States and positive impacts in some parts of the Pacific Northwest and New England.

Science, this issue p. 1362; see also p. 1330


Estimates of climate change damage are central to the design of climate policies. Here, we develop a flexible architecture for computing damages that integrates climate science, econometric analyses, and process models. We use this approach to construct spatially explicit, probabilistic, and empirically derived estimates of economic damage in the United States from climate change. The combined value of market and nonmarket damage across analyzed sectors—agriculture, crime, coastal storms, energy, human mortality, and labor—increases quadratically in global mean temperature, costing roughly 1.2% of gross domestic product per +1°C on average. Importantly, risk is distributed unequally across locations, generating a large transfer of value northward and westward that increases economic inequality. By the late 21st century, the poorest third of counties are projected to experience damages between 2 and 20% of county income (90% chance) under business-as-usual emissions (Representative Concentration Pathway 8.5).

View Full Text