Click chemistry enables preclinical evaluation of targeted epigenetic therapies

See allHide authors and affiliations

Science  30 Jun 2017:
Vol. 356, Issue 6345, pp. 1397-1401
DOI: 10.1126/science.aal2066

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Are better drugs just a click away?

Drugs that show promise in preclinical models often fail in the clinic, in part because of limited information on drug localization within cells and across tissues. In a proof-of-concept study, Tyler et al. applied click chemistry methods to study the localization of bromodomain inhibitors. These are cancer drugs that alter chromatin structure and gene expression. Clickable derivatives of the drugs localized within chromatin and showed that the drugs exhibit distinct modes of binding at responsive and unresponsive genes. In a mouse leukemia model, the click-probes revealed that the drugs accumulate to different extents in the spleen and bone marrow, which are two tissue sources of leukemic cells.

Science, this issue p. 1397


The success of new therapies hinges on our ability to understand their molecular and cellular mechanisms of action. We modified BET bromodomain inhibitors, an epigenetic-based therapy, to create functionally conserved compounds that are amenable to click chemistry and can be used as molecular probes in vitro and in vivo. We used click proteomics and click sequencing to explore the gene regulatory function of BRD4 (bromodomain containing protein 4) and the transcriptional changes induced by BET inhibitors. In our studies of mouse models of acute leukemia, we used high-resolution microscopy and flow cytometry to highlight the heterogeneity of drug activity within tumor cells located in different tissue compartments. We also demonstrate the differential distribution and effects of BET inhibitors in normal and malignant cells in vivo. This study provides a potential framework for the preclinical assessment of a wide range of drugs.

View Full Text