Report

Neurodevelopmental protein Musashi-1 interacts with the Zika genome and promotes viral replication

+ See all authors and affiliations

Science  07 Jul 2017:
Vol. 357, Issue 6346, pp. 83-88
DOI: 10.1126/science.aam9243

You are currently viewing the abstract.

View Full Text

Inherited microcephaly exposes Zika culprit

Microcephaly has been the terrifying hallmark of the recent outbreak of Zika virus (ZIKV) in the Americas. How the virus damages brain development in the fetus is enigmatic. Chavali et al. found that in congenital microcephaly, mutations in a neural precursor protein, Musashi-1 (MSI1), impede RNA binding to neural stem cell targets, resulting in abnormal brain development (see the Perspective by Griffin). MSI1 also binds ZIKV RNA to amplify viral replication in cells. This interaction could put a pregnant woman at risk of giving birth to a microcephalic child. Furthermore, MSI1 is expressed at high levels in the mouse testis, which may explain the sexual transmission of this virus.

Science, this issue p. 83; see also p. 33

Abstract

A recent outbreak of Zika virus in Brazil has led to a simultaneous increase in reports of neonatal microcephaly. Zika targets cerebral neural precursors, a cell population essential for cortical development, but the cause of this neurotropism remains obscure. Here we report that the neural RNA-binding protein Musashi-1 (MSI1) interacts with the Zika genome and enables viral replication. Zika infection disrupts the binding of MSI1 to its endogenous targets, thereby deregulating expression of factors implicated in neural stem cell function. We further show that MSI1 is highly expressed in neural progenitors of the human embryonic brain and is mutated in individuals with autosomal recessive primary microcephaly. Selective MSI1 expression in neural precursors could therefore explain the exceptional vulnerability of these cells to Zika infection.

View Full Text