Report

High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices

+ See all authors and affiliations

Science  14 Jul 2017:
Vol. 357, Issue 6347, pp. 181-184
DOI: 10.1126/science.aal3357

You are currently viewing the abstract.

View Full Text

Heat-loving quantum oscillations

The shape of the Fermi surface in a conductor can be gleaned through quantum oscillations—periodic changes in transport properties as an external magnetic field is varied. Like most quantum properties, the phenomenon can usually be observed only at very low temperatures. Krishna Kumar et al. report quantum oscillations in graphene that do not go away even at the temperature of boiling water. Although “ordinary,” low-temperature quantum oscillations die away, another oscillatory behavior sets in that is extremely robust to heating. These resilient oscillations appear only in samples in which graphene is nearly aligned with its hexagonal boron nitride substrate, indicating that they are caused by the potential of the moiré superlattice that forms in such circumstances.

Science, this issue p. 181

Abstract

Cyclotron motion of charge carriers in metals and semiconductors leads to Landau quantization and magneto-oscillatory behavior in their properties. Cryogenic temperatures are usually required to observe these oscillations. We show that graphene superlattices support a different type of quantum oscillation that does not rely on Landau quantization. The oscillations are extremely robust and persist well above room temperature in magnetic fields of only a few tesla. We attribute this phenomenon to repetitive changes in the electronic structure of superlattices such that charge carriers experience effectively no magnetic field at simple fractions of the flux quantum per superlattice unit cell. Our work hints at unexplored physics in Hofstadter butterfly systems at high temperatures.

This is an article distributed under the terms of the Science Journals Default License.

View Full Text