Report

Control of species-dependent cortico-motoneuronal connections underlying manual dexterity

+ See all authors and affiliations

Science  28 Jul 2017:
Vol. 357, Issue 6349, pp. 400-404
DOI: 10.1126/science.aan3721

You are currently viewing the abstract.

View Full Text

The disappearance of fine motor control

Manual skills are much better developed in primates than in rodents. This difference is in part due to species-specific differences in the control of motoneurons by the brain. Gu et al. used a range of approaches to evaluate potential corticospinal tract projections in neonatal mice. These projections exist immediately after birth but disappear within the first 2 postnatal weeks owing to the actions of plexin A, a member of the semaphorin receptor family. Targeted deletion of semaphorin receptors in mutant mice prevented elimination of corticospinal tract projection and loss of functional monosynaptic input to spinal motoneurons.

Science, this issue p. 400

Abstract

Superior manual dexterity in higher primates emerged together with the appearance of cortico-motoneuronal (CM) connections during the evolution of the mammalian corticospinal (CS) system. Previously thought to be specific to higher primates, we identified transient CM connections in early postnatal mice, which are eventually eliminated by Sema6D-PlexA1 signaling. PlexA1 mutant mice maintain CM connections into adulthood and exhibit superior manual dexterity as compared with that of controls. Last, differing PlexA1 expression in layer 5 of the motor cortex, which is strong in wild-type mice but weak in humans, may be explained by FEZF2-mediated cis-regulatory elements that are found only in higher primates. Thus, species-dependent regulation of PlexA1 expression may have been crucial in the evolution of mammalian CS systems that improved fine motor control in higher primates.

View Full Text