Report

Chemogenetics revealed: DREADD occupancy and activation via converted clozapine

+ See all authors and affiliations

Science  04 Aug 2017:
Vol. 357, Issue 6350, pp. 503-507
DOI: 10.1126/science.aan2475

You are currently viewing the abstract.

View Full Text

DREADD not the designer compound

Designer receptors exclusively activated by designer drugs (DREADDs) constitute a powerful chemogenetic strategy that can modulate nerve cell activity in freely moving animal preparations. Gomez et al. used radioligand receptor occupancy measurements and in vivo positron emission tomography to show that DREADDs expressed in the brain are not activated by the designer compound CNO (clozapine N-oxide). Instead, they are activated by the CNO metabolite clozapine, a drug with multiple endogenous targets. This may have important implications for the interpretation of results obtained with this popular technology.

Science, this issue p. 503

Abstract

The chemogenetic technology DREADD (designer receptors exclusively activated by designer drugs) is widely used for remote manipulation of neuronal activity in freely moving animals. DREADD technology posits the use of “designer receptors,” which are exclusively activated by the “designer drug” clozapine N-oxide (CNO). Nevertheless, the in vivo mechanism of action of CNO at DREADDs has never been confirmed. CNO does not enter the brain after systemic drug injections and shows low affinity for DREADDs. Clozapine, to which CNO rapidly converts in vivo, shows high DREADD affinity and potency. Upon systemic CNO injections, converted clozapine readily enters the brain and occupies central nervous system–expressed DREADDs, whereas systemic subthreshold clozapine injections induce preferential DREADD-mediated behaviors.

View Full Text