Report

Vinculin forms a directionally asymmetric catch bond with F-actin

See allHide authors and affiliations

Science  18 Aug 2017:
Vol. 357, Issue 6352, pp. 703-706
DOI: 10.1126/science.aan2556

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Making the right catch

Tension reveals cryptic vinculin-binding sites on α-catenin and talin at cadherin-based cell-cell and integrin-based cell-matrix adhesions, respectively. The enrichment of vinculin at cellular adhesions is thus an indicator of load-induced reinforcement of the cytoskeletal linkage. Huang et al. used a single-molecule optical trap assay to measure the binding lifetimes of vinculin to single actin filaments under load. The vinculin-F-actin interaction formed a directional catch bond—one that is very weak at low force but that greatly increases in lifetime with increasing force. This explains vinculin's role as a reinforcing linker at both cell-cell and cell-matrix adhesions.

Science, this issue p. 703

Abstract

Vinculin is an actin-binding protein thought to reinforce cell-cell and cell-matrix adhesions. However, how mechanical load affects the vinculin–F-actin bond is unclear. Using a single-molecule optical trap assay, we found that vinculin forms a force-dependent catch bond with F-actin through its tail domain, but with lifetimes that depend strongly on the direction of the applied force. Force toward the pointed (–) end of the actin filament resulted in a bond that was maximally stable at 8 piconewtons, with a mean lifetime (12 seconds) 10 times as long as the mean lifetime when force was applied toward the barbed (+) end. A computational model of lamellipodial actin dynamics suggests that the directionality of the vinculin–F-actin bond could establish long-range order in the actin cytoskeleton. The directional and force-stabilized binding of vinculin to F-actin may be a mechanism by which adhesion complexes maintain front-rear asymmetry in migrating cells.

View Full Text