Report

Biological fabrication of cellulose fibers with tailored properties

See allHide authors and affiliations

Science  15 Sep 2017:
Vol. 357, Issue 6356, pp. 1118-1122
DOI: 10.1126/science.aan5830

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

More than just a cotton shirt

Responsive or functional fabrics include coatings or secondary materials with properties such as changing color with temperature or generating electricity with movement. The challenge is that anything added to a fabric can get washed or worn away. Hence, Natalio et al. opted to build the functionality directly into cotton grown in vitro, through the addition of glucose modified at the C2 position to the culture medium. By this process, fibers can be made that naturally fluoresce or have magnetic properties, for instance.

Science, this issue p. 1118

Abstract

Cotton is a promising basis for wearable smart textiles. Current approaches that rely on fiber coatings suffer from function loss during wear. We present an approach that allows biological incorporation of exogenous molecules into cotton fibers to tailor the material’s functionality. In vitro model cultures of upland cotton (Gossypium hirsutum) are incubated with 6-carboxyfluorescein–glucose and dysprosium–1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid–glucose, where the glucose moiety acts as a carrier capable of traveling from the vascular connection to the outermost cell layer of the ovule epidermis, becoming incorporated into the cellulose fibers. This yields fibers with unnatural properties such as fluorescence or magnetism. Combining biological systems with the appropriate molecular design offers numerous possibilities to grow functional composite materials and implements a material-farming concept.

View Full Text