Liquid phase condensation in cell physiology and disease

See allHide authors and affiliations

Science  22 Sep 2017:
Vol. 357, Issue 6357, eaaf4382
DOI: 10.1126/science.aaf4382

You are currently viewing the abstract.

View Full Text

Phase separation and cellular organization

Cells are compartmentalized to allow distinct processes to occur in membrane-delimited organelles. But similar spatial restriction of cellular components in membrane-less intracellular assemblies or condensates also appears to occur—much like oil droplets in water. These compartments contribute to multiple biological processes and regulatory mechanisms. Shin and Brangwynne review the protein-protein and protein-RNA interactions that result in formation of these structures. They explain known and potential functions of such structures in a range of examples, from signaling and local control of biochemical reactants to spatial segregation. In disease, such aggregation may go awry and contribute to neurodegenerative syndromes associated with inappropriate protein aggregation.

Science, this issue p. eaaf4382

Structured Abstract


Living cells contain distinct subcompartments to facilitate spatiotemporal regulation of biological reactions. In addition to canonical membrane-bound organelles such as secretory vesicles and endoplasmic reticulum, there are many organelles that do not have an enclosing membrane yet remain coherent structures that can compartmentalize and concentrate specific sets of molecules. Examples include assemblies in the nucleus such as the nucleolus, Cajal bodies, and nuclear speckles and also cytoplasmic structures such as stress granules, P-bodies, and germ granules. These structures play diverse roles in various biological processes and are also increasingly implicated in protein aggregation diseases.


A number of studies have shown that membrane-less assemblies exhibit remarkable liquid-like features. As with conventional liquids, they typically adopt round morphologies and coalesce into a single droplet upon contact with one another and also wet intracellular surfaces such as the nuclear envelope. Moreover, component molecules exhibit dynamic exchange with the surrounding nucleoplasm and cytoplasm. These findings together suggest that these structures represent liquid-phase condensates, which form via a biologically regulated (liquid-liquid) phase separation process. Liquid phase condensation increasingly appears to be a fundamental mechanism for organizing intracellular space. Consistent with this concept, several membrane-less organelles have been shown to exhibit a concentration threshold for assembly, a hallmark of phase separation. At the molecular level, weak, transient interactions between molecules with multivalent domains or intrinsically disordered regions (IDRs) are a driving force for phase separation. In cells, condensation of liquid-phase assemblies can be regulated by active processes, including transcription and various posttranslational modifications. The simplest physical picture of a homogeneous liquid phase is often not enough to capture the full complexity of intracellular condensates, which frequently exhibit heterogeneous multilayered structures with partially solid-like characters. However, recent studies have shown that multiple distinct liquid phases can coexist and give rise to richly structured droplet architectures determined by the relative liquid surface tensions. Moreover, solid-like phases can emerge from metastable liquid condensates via multiple routes of potentially both kinetic and thermodynamic origins, which has important implications for the role of intracellular liquids in protein aggregation pathologies.


The list of intracellular assemblies driven by liquid phase condensation is growing rapidly, but our understanding of their sequence-encoded biological function and dysfunction lags behind. Moreover, unlike equilibrium phases of nonliving matter, living cells are far from equilibrium, with intracellular condensates subject to various posttranslational regulation and other adenosine triphosphate–dependent biological activity. Efforts using in vitro reconstitution, combined with traditional cell biology approaches and quantitative biophysical tools, are required to elucidate how such nonequilibrium features of living cells control intracellular phase behavior. The functional consequences of forming liquid condensates are likely multifaceted and may include facilitated reaction, sequestration of specific factors, and organization of associated intracellular structures. Liquid phase condensation is particularly interesting in the nucleus, given the growing interest in the impact of nuclear phase behavior on the flow of genetic information; nuclear condensates range from micrometer-sized bodies such as the nucleolus to submicrometer structures such as transcriptional assemblies, all of which directly interact with and regulate the genome. Deepening our understanding of these intracellular states of matter not only will shed light on the basic biology of cellular organization but also may enable therapeutic intervention in protein aggregation disease by targeting intracellular phase behavior.

Liquid phase condensation: An emerging paradigm of cellular organization.

Living cells contain various types of condensed liquid-like structures enriched with a distinct set of biomolecules that assemble through regulated phase separation. Sequence-encoded physicochemical properties lead to rich intracellular phase behaviors, including multiphase structuring and emergence of solid-like states from metastable liquids. Liquid condensates affect the flow of information in the cell, often through affecting RNA transcription and protein translation.


Phase transitions are ubiquitous in nonliving matter, and recent discoveries have shown that they also play a key role within living cells. Intracellular liquid-liquid phase separation is thought to drive the formation of condensed liquid-like droplets of protein, RNA, and other biomolecules, which form in the absence of a delimiting membrane. Recent studies have elucidated many aspects of the molecular interactions underlying the formation of these remarkable and ubiquitous droplets and the way in which such interactions dictate their material properties, composition, and phase behavior. Here, we review these exciting developments and highlight key remaining challenges, particularly the ability of liquid condensates to both facilitate and respond to biological function and how their metastability may underlie devastating protein aggregation diseases.

View Full Text