Report

Electronic crystal growth

See allHide authors and affiliations

Science  29 Sep 2017:
Vol. 357, Issue 6358, pp. 1378-1381
DOI: 10.1126/science.aal2426

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Ordering and disordering electrons

When a liquid is cooled rapidly, it can form a glass, a state stuck between liquid and solid. Two groups looked in detail into analogous dynamics in electronic systems. Sato et al. and Sasaki et al. studied layered organic materials with a triangular in-plane lattice. These materials can assume a state in which their charge distribution has a regular pattern—an electronic or charge crystal. When the materials were cooled rapidly, a charge glass was formed instead and then allowed to crystallize. The dynamics of crystallization showed similarities to the analogous processes in conventional glasses.

Science, this issue p. 1378, p. 1381

Abstract

Interacting atoms or molecules condense into liquid, and, when cooled further, they form a crystal. The time evolution of the atomic or molecular ordering has been widely studied as a nonequilibrium emergence of order from a supercooled liquid or a glass. Interacting electrons in a variety of correlated electron systems also form crystals, but observing the time evolution of electronic crystallization has been experimentally challenging. Here, working with an organic conductor exhibiting a supercooled charge liquid or charge glass as a metastable state, we observed electronic crystal growth through resistivity and nuclear magnetic resonance measurements. The temperature profile of the crystal growth is similar to those observed in classical systems and reveals two distinct regimes for the mechanism of electronic crystallization.

View Full Text