Report

Tsunami-driven rafting: Transoceanic species dispersal and implications for marine biogeography

See allHide authors and affiliations

Science  29 Sep 2017:
Vol. 357, Issue 6358, pp. 1402-1406
DOI: 10.1126/science.aao1498

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Long-distance life rafting

When coastal ecosystems are affected by storms or tsunamis, organisms can be rafted across oceans on floating debris. However, such events are rarely observed, still less quantified. Carlton et al. chart the rafting journeys of coastal marine organisms across the Pacific Ocean after the 2011 East Japan earthquake and tsunami (see the Perspective by Chown). Of the nearly 300 mainly invertebrate species that reached the shores of the U.S. Pacific Northwest, most arrived attached to the remains of manmade structures.

Science, this issue p. 1402; see also p. 1356

Abstract

The 2011 East Japan earthquake generated a massive tsunami that launched an extraordinary transoceanic biological rafting event with no known historical precedent. We document 289 living Japanese coastal marine species from 16 phyla transported over 6 years on objects that traveled thousands of kilometers across the Pacific Ocean to the shores of North America and Hawai‘i. Most of this dispersal occurred on nonbiodegradable objects, resulting in the longest documented transoceanic survival and dispersal of coastal species by rafting. Expanding shoreline infrastructure has increased global sources of plastic materials available for biotic colonization and also interacts with climate change–induced storms of increasing severity to eject debris into the oceans. In turn, increased ocean rafting may intensify species invasions.

View Full Text