Report

Tropical forests are a net carbon source based on aboveground measurements of gain and loss

See allHide authors and affiliations

Science  13 Oct 2017:
Vol. 358, Issue 6360, pp. 230-234
DOI: 10.1126/science.aam5962

You are currently viewing the abstract.

View Full Text

Forests out of balance

Are tropical forests a net source or net sink of atmospheric carbon dioxide? As fundamental a question as that is, there still is no agreement about the answer, with different studies suggesting that it is anything from a sizable sink to a modest source. Baccini et al. used 12 years of MODIS satellite data to determine how the aboveground carbon density of woody, live vegetation has changed throughout the entire tropics on an annual basis. They find that the tropics are a net carbon source, with losses owing to deforestation and reductions in carbon density within standing forests being double that of gains resulting from forest growth.

Science, this issue p. 230

Abstract

The carbon balance of tropical ecosystems remains uncertain, with top-down atmospheric studies suggesting an overall sink and bottom-up ecological approaches indicating a modest net source. Here we use 12 years (2003 to 2014) of MODIS pantropical satellite data to quantify net annual changes in the aboveground carbon density of tropical woody live vegetation, providing direct, measurement-based evidence that the world’s tropical forests are a net carbon source of 425.2 ± 92.0 teragrams of carbon per year (Tg C year–1). This net release of carbon consists of losses of 861.7 ± 80.2 Tg C year–1 and gains of 436.5 ± 31.0 Tg C year–1. Gains result from forest growth; losses result from deforestation and from reductions in carbon density within standing forests (degradation or disturbance), with the latter accounting for 68.9% of overall losses.

View Full Text